
Exploration of Neuro-Fuzzy Spam Filtering based on
Naive Bayesian Filters

Madhujit Ghosh and Jonathan J. Guernsey
Dr. Devinder Kaur

EECS 6360 - Knowledge Based Systems

Abstract: A text parser was used to calculate the
statistical distribution of words within an email
body. This information was used by a neuro-
fuzzy system to determine the spam classification
of the email. This process of detecting spam in
an email was experimentally found to be 90%
efficient. This design is exceptionally good as
compared to present day filters based on its
simplicity and limited scope of detection
methods. Our system could be further improved
by incorporating other identifiers of email spam.

Introduction

Spam is unsolicited email on the internet. A
major problem facing internet computer users
today is the deluge of unwanted and often rude
email waiting in their email-boxes every
morning. This unsolicited email is flooding the
Internet with many copies of the same message,
in an attempt to force the message on people who
would not otherwise choose to receive it. Most
spam is commercial advertising, often for
dubious products, get-rich-quick schemes, or
quasi-legal services. Spam costs the sender very
little to send. Most of the cost is absorbed by the
recipient or by the carriers rather than by the
sender. This is mostly in the form of lost
productivity or network resources.[5] Current
estimates suggest that up to 30% of today's e-
mail volume is spam, a figure likely to increase
over time. In addition to the unnecessary strain it
places on a corporate network, spam frequently
contains viruses.

According to Paul Graham in his now well
known internet article, “A Plan for Spam.”

… they (spammers) have to deliver
their message, whatever it is. If we can
write software that recognizes their
messages, there is no way they can get
around that.”

Paul Graham introduced the idea of using Naive
Bayesian Filters (as pure discrete sets) in his
article.[3] This information was further
assimilated by I. Androutsopoulos et al in their
article “An Evaluation of Naive Bayesian Anti-

Spam Filtering.” [1] We have used this idea of
machine learning and applied fuzzification and
artificial neural network techniques to further
simplify and yet increase the efficiency of spam
classification.

The project development was divided into three
separate parts. We wrote a word filter that sifted
through the text contained inside the body of an
email, parsing it using (slightly modified) Naive
Bayesian methods and normalizing weighted
values producing a fuzzy output. A fuzzy
algorithm and classification scheme was
developed for the text parser. The next step was
to develop a neural network which could be
trained with the fuzzy classifiers from the
previous section of the project. When the fuzzy
classifiers generated by the text parser were
passed into the trained neural network, it outputs
a spam/no spam identifier for the input email.
The network was trained with a number of spam
and non-spam emails before testing was
performed with previously unseen data.

Text Parser Design

The whole project, including the neural network
was designed and written in Visual C++ 6.0 SP5.
The code is attached at the end of this report. The
GUI for the project was written using Microsoft
Foundation Classes (MFC).

The parser takes an input as a simple text file
from the user. Using the GUI, the user browses
their computer and chooses a text file which is to
be classified for spam. To simplify the design
aspect of the project, we copied and pasted the
emails from an email client to Notepad and
saved them as simple text files. The parser reads
in the text file and counts the number of times
each word appears in the email and stores them
in a dynamic array. This array is sorted when the
end of the text file is reached. This dynamic
array is then passed to the second stage inside the
parser, the fuzzification algorithm.

The array containing the parsed words is fed into
the fuzzification algorithm. Two separate text
files store the good and bad fuzzy identifier
values for well known and commonly found
words in non-spam and spam emails
respectively. The fuzzy identifier for each word
is weighted according to the importance of the
word in association with spam. Words which
could immediately imply that an email is spam
have the highest weights, while others, which
could be present in good emails are provided
with lower weights. The word lists were
maintained as text files so that they could easily
be added to by the user. The words and their
associated weights are read into separate data
trees. The next part of the program uses simple
word matching techniques. When it comes upon
a word in the main body of the email which is
present in either of the word lists, it multiplies
the associated weight of the word from the list
with the number of times the word showed up in
the email and keeps track of these values.

Parser
Fuzzification

Algorithm

Bad List
Word1 _1_
Word2 _5_
Word3 _9_

Good List
Word1 _0_
Word2 _7_
Word3 _3_

Good Value
Bad Value

Email

Figure 2.1: Graphical representation of text parser
(fuzzification algorithm)

Once the total weights of the good and the bad
words have been determined by the program, we
used two separate methods of generating an
output. Both of these methods were implemented
into the program and tested to determine the best
method of classification. The first method takes a
minimum of the good weighted values and a
minimum of the weighted values of the good and
bad words in the email. These weights are then
passed into the neural network to be further
analyzed. The equations defining this method
are shown in equation 2.1.

x = good or bad words
?x = number of occurances of good/bad word

wx = weight of ?x

Equation 2.1

The second method follows the same steps of
word comparison between the statistical
distribution and the good/bad word lists, but it
computes the sum of the good weighted values
and the sum of the bad weighted values and
divides them by their total number of
occurrences, thus normalizing the output of the
system of word classifiers. This output is then
passed onto the neural network to be used to
either learn from or classify according to the
network rules. The equations defining this
method are shown in equation 2.2.

x = good or bad words
 ?x = number of occurances of good/bad word

wx = weight of ?x

Equation 2.2

Artificial Neural Network Design

An artificial neural network is a collection of
mathematical models that emulate some of the
observed properties of biological nervous
systems and draw on the analogies of adaptive
biological learning.[2] Of most interest is the
emulation of the decision making process as it
applies to object recognition. As an example, a
normal person can recognize that a campfire is
dangerous by simply recognizing the flames as
fire. A person is normally taught that fire is
“hot”, “will burn”, or in some cases the person
may have learned from experience by being
burnt. In all cases this training or experience has
taught the person that fire is dangerous and
painful. This training has been trained into the
persons brain or “biological neural network”
When the person comes upon the campfire and
views the flame, they will recognize the presence
of heat as well as the shape of the flame among
other attributes and will almost immediately
recognize that it is fire. This will link the person
to the fact that it is dangerous and will attempt to
avoid contact with it. This concept of
classification of an object can be modeled using
a neural network. Using the input from sensors
of a sort, information is applied to the inputs of
the neural network to be processed to achieve the
output classification. In the case described, the
heat is detected by the skin, visual shape of the
flames by the eyes, each of these inputs are

x

n

i
ixix

n

w
x

∑
=1

,, γ

)min(,, ixixw γ

applied to the brain’s neural network along with
other attributes and the classification of fire is
determined. It is this classification of
information as well as the fact that artificial
neural networks can be trained that makes them
readily applicable to an email filter. Since the
email filter is a classifier that should recognize
an email as either spam or not-spam, a neural
network should be able to take in information
about the content of the email and be able to
learn and classify them. To implement a neural
network for a simple two pattern classification,
the most simplistic neural network was used, a
single neuron. A single neuron has the ability to
make a single classification between two
patterns, although it has the limitation that the
two classes must be linearly separable. A
linearly separable classification is defined as
classification between two patterns that can be
accomplished using a single line. As shown in
Figure 3.1, the logical AND function is a linearly
separable classification while the logical XOR
(exclusive-or) function is not linearly separable.

(a)

(b)

Requires more than 1 single
linear line

Logical 1
Logical 0

Figure 3.1 (a) Logical AND Function (b) Logical XOR
Function

To simplify this initial exploration of the email
filter, the assumption that spam and not-spam
pattern classifications are linearly separable is
imposed. Using this assumption allows us to
simplify the neural network to the single neuron
as well as simplify the neural network training
that is discussed in section IV. Since the two
fuzzified outputs of the fuzzy algorithm portion

of the filter are applied to the input terminals of
the artificial neural network and the output of the
network is a spam or not-spam classification, a
perceptron was chosen for the single neuron.
The design of the perceptron is a standardized
design as shown in Figure 3.2.

Good Value

Bad Value

Wg

Wb

Bias

Weighted
Summation

Activation
Function Output

(Expected - Actual)

*1/2

Figure 3.2 Perceptron

The perceptron summation function, f is a
weighted sum as defined below. The activation
function is the unipolar step function shown in
Figure3.3.

biasn

i
i

n

i
ii

w

xw
f θ−=

∑

∑

=

=

0

0

x = input value of input i
w = weight value of input i

Equation 3.1

1

0 x

y

Figure 3.3 Unipolar Step Function

This perceptron works well with the current filter
design because the perceptron is already
designed in the correct format to work with the
outputs of the fuzzification algorithm. Using the
two weighted sums, good “words” and bad
“words”, the neural network attempts to ascertain
the spam classification. This is accomplished by
comparing the summation value against the
linear separation that is defined by training the
neuron. As an example, if the bad weighted
value was 1000, while the good weighted value
was 100, the email would likely be classified as a
spam email, because the bad weighted value is
greater than the good weighted value by a factor
of 10. The neural network training tunes this
comparison operation to make it more efficient
in classifying the email.

Neural Network Training

The training of the neural network perceptron is
done using a modified version of the single
discrete perceptron training algorithm (SDPTA)
using pattern training mode which updates the
weights after each pattern is processed.[6] The
training is only considered complete when the
neural network can process all training patterns
without a singular misclassification. This
algorithm uses an expected value and back
propagation to adjust the weights of the
perceptron after each pattern (set of inputs) is
processed within the neuron. The normal
SDPTA re-weighting equation is shown below.

2)actualexpected(
2

−=∆
α

w

Equation 4.1

This equation was modified in our simplistic
design for efficiency. The squared factor was
removed from the adjustment equations for both
the weights and bias values. The learning factor
a/2 was also removed from the bias re-weighting
equation giving the following equations.

)actualexpected(
2

−=∆
α

w

Equation 4.2

)actualexpected(−=∆bias

Equation 4.3

The values of the weights and bias for the neuron
are stored in a configuration file that is loaded
during the startup of the filter and updated after
training has been performed. These values allow
us to continually add to our training set without
re-training the neuron over information that it
has already learned. It is assumed that the trainer
is adding to the initial training set as opposed to
writing an entirely new training set which would
completely override all previous training. In our
actual training the learning constant was set to
the standard value of 1. This was done to
decrease the rate of change for the re-weighting
to allow for a more refined linear separation
between the spam / not-spam classifications.
The values of the initial training set for good
weighted values and bad weighted values was
designed to keep away from extreme differences
in value. The training set uses small differences
to allow the linear separation to classify close
values which would occur neat the separation
boundary.

Experimentation

Using the training file, we trained the system
with 14 emails. There were 7 spam emails and 7
non-spam emails included in the test. To
simulate randomness in the system as is found in
real life, the good and bad emails were spread
out over the training set. Each training email was
followed by an expected spam classifier for that
email. The trained network was then used to
classify 200 different emails from different
sources which had not previously been seen by
the system. At the end of the checking process,
we ended up with 90% correct answers and 0%
false positives. A false positive would be a more
serious error than a false negative as a false

positive would mean an important email being
identified as spam and deleted. A false negative
would denote a spam email that was classified as
non-spam.

Results and Conclusions

The efficiency of email spam filters can vary
upon the product and their placement within an
email network. It is very difficult to generalize
the efficiency of a group of products without
looking at implementation. Mailfilter.com
assures customers that their product will “reduce
unwanted e-mail by 80 to 95 percent’ while other
companies tout a 95 to 100 percent success rate
for eliminating spam.[4] However, all of these
statistics are dependant on a number of salient
factors. Very strict spam filters generate a huge
number of false positives which increases their
hit rates to close to a hundred percent. Even
though these products look like they are very
effective in spam detection, they result in the loss
of important emails. Also, many of the filtering
techniques used by commercial filters look at a
variety of aspects of an email before classifying
it. While comparing our results with the
commercial spam filters available today, we have
to keep in mind that our filter uses only one
aspect of emails to identify it as spam. Keeping
this simplicity of design in mind, a comparison
between our results and that of industry filters
leads us to believe that our method is very useful
and quite effective in spam filtering. The next
section talks extensively about the modifications
that could be made to the system to increase its
efficiency and make it more useful in real world
applications.

Future Directions

This system is extremely capable of parsing
through text emails and classifying them as spam
or otherwise. However there are some limitations
inherent in the system. These limitations were
posed by the lack of time and scope of the
project. Some very small modifications and
module additions would make this system much
more robust and versatile.

Most end users use email filters to parse through
a small number of emails and try to increase
productivity by not having to look through many
unwanted emails. If this system were
incorporated into an existing email client or was
extended into a complete email client capable of
receiving and sending emails, it would be a

perfect addition to any desktop system. One
future direction for this project would be to add
email retrieval (POP) and sending (SMTP)
functionality to the system.

At the present state of the program, it only looks
at the text that is contained inside the body of the
email. Another future improvement would be the
addition of more modules into the neural
network to look at other aspects of the email.
The subject line of the email, the sender of the
email and the images contained inside the email
could be other important identifiers of spam.
Another improvement to the neural network
would be to design a more complex neural
network model that could bypass the assumption
that spam / non-spam classifications are linearly
separable. More and more spam seems to
contain links to different sites on the internet. If
we could setup a way for the program to follow
the links to these sites and parse the text
contained in those sites, we would come up with
even more powerful classification methods.

One feature of this program that we would like to
mention here is that simplicity and versatility of
the neural network design and the efficiency of
the data structures used for the parsing problem.
This program would function fine for a single
user as a desktop spam filter. However, it would
really shine as a high end server spam filtering
system. The data structures used to parse email
text is powerful enough to crunch through
thousands of emails in very short amounts of
time and this program would be a powerful
addition to enterprise PROCMail or QMail
server.

In conclusion, we have used a modified neuro-
fuzzy model to effectively understand the simple
word patterns that exist in unwanted and
warranted emails. We have further supported our
hypothesis with the design and construction of a
program which accurately identifies these
patterns in internet email, learns from the output
of these patterns and uses them to classify new
emails, thus helping to simplify a complicated
and growing problem on the internet today.

References

[1] Androutsopoulos, Ion, John Koutsias,
Konstantinos V. Chandrinos, George
Paliouras and Constantine D.
Spyropoulos. "An Evaluation of Naive
Bayesian Anti-Spam Filtering" Machine
Learning in the New Information Age:
Proceedings of the Eleventh European
Conference on Machine Learning,
Barcelona, Spain. 2000. Eds. G.
Potamias, V. Moustakis, and M. van
Someren. Barcelona: 2000. 9-17.

[2] Artificial Neural Networks Page. 1997.
Battelle Memorial Institute. 16 Dec.
2002
<http://www.emsl.pnl.gov:2080/proj/ne
uron/neural/what.html>.

[3] Graham, Paul. “A Plan for Spam.”
Spam Discussion and Research Site. 16
Dec. 2002
<http://www.paulgraham.com>.

[4] Mail-Filters.Com: Premier Spam
Filtering Solutions for Enterprises .
2001-2002. San Mateo, CA. 16 Dec.
2002 <http://www.mail-filters.com>.

[5] Mueller, Scott Hazen. "Fight Spam on
the Internet!" Spam Abuse Information
Page. 16 Dec. 2002
<http://spam.abuse.net>.

[6] Zurada, Jacek M. Introduction to
Artificial Neural Systems. West Group,
Jan. 1992.

